Lecture 13
 14.4 The Chain Rule

Jeremiah Southwick

February 20, 2019

Last class

Definition

The partial derivative of $f(x, y)$ with respect to x is

$$
f_{x}(x, y)=\frac{\partial f}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} .
$$

The partial derivative with respect to y is

$$
f_{y}(x, y)=\frac{\partial f}{\partial y}=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h} .
$$

$$
\begin{aligned}
\frac{\partial}{\partial x}\left[\frac{\partial f}{\partial x}\right] & =\frac{\partial^{2} f}{\partial x^{2}}=f_{x x} & \frac{\partial}{\partial y}\left[\frac{\partial f}{\partial x}\right]=\frac{\partial^{2} f}{\partial y \partial x}=f_{x y} \\
\frac{\partial}{\partial y}\left[\frac{\partial f}{\partial y}\right] & =\frac{\partial^{2} f}{\partial y^{2}}=f_{y y} & \frac{\partial}{\partial x}\left[\frac{\partial f}{\partial y}\right]=\frac{\partial^{2} f}{\partial x \partial y}=f_{y x}
\end{aligned}
$$

Example

Example

Find the second-order partial derivatives of $f(x, y)=y e^{x^{2}-y}$.

Example

Example

Find the second-order partial derivatives of $f(x, y)=y e^{x^{2}-y}$.
$f_{x}(x, y)=2 x y e^{x^{2}-y}$
$f_{y}(x, y)=e^{x^{2}-y}-y e^{x^{2}-y}$
$f_{x x}(x, y)=\left(4 x^{2}+2\right) e^{x^{2}-y}$
$f_{x y}(x, y)=(-2 x)(y-1) e^{x^{2}-y}$
$f_{y x}(x, y)=(-2 x)(y-1) e^{x^{2}-y}$
$f_{y y}(x, y)=(y-2) e^{x^{2}-y}$

Mixed partials theorem

Theorem
If $f(x, y)$ and its partial derivatives $f_{x}, f_{y}, f_{x y}, f_{y x}$ are defined near (a, b), then

$$
f_{y x}(a, b)=f_{x y}(a, b)
$$

This is known as Clairaut's Theorem.
In particular, if the conditions in the theorem hold for all the pairs (a, b) in the domain of the functions involved, then the functions will have the same formula on that domain, and we only need to find one of $f_{x y}$ or $f_{y x}$ to know the other.

14.4 Chain Rule

14.4 Chain Rule

In Calculus 1, the chain rule says that whenever we have a function which depends on another function, i.e., $y=f(g(x))$, we differentiate using the chain rule:

14.4 Chain Rule

In Calculus 1, the chain rule says that whenever we have a function which depends on another function, i.e., $y=f(g(x))$, we differentiate using the chain rule: $y^{\prime}=f^{\prime}(g(x))\left[g^{\prime}(x)\right]$.

14.4 Chain Rule

In Calculus 1, the chain rule says that whenever we have a function which depends on another function, i.e., $y=f(g(x))$, we differentiate using the chain rule: $y^{\prime}=f^{\prime}(g(x))\left[g^{\prime}(x)\right]$.
This can be written with differentials in the following way:

$$
\frac{d y}{d x}=\frac{d f}{d g} \cdot \frac{d g}{d x}
$$

14.4 Chain Rule

In Calculus 1, the chain rule says that whenever we have a function which depends on another function, i.e., $y=f(g(x))$, we differentiate using the chain rule: $y^{\prime}=f^{\prime}(g(x))\left[g^{\prime}(x)\right]$.
This can be written with differentials in the following way:

$$
\frac{d y}{d x}=\frac{d f}{d g} \cdot \frac{d g}{d x}
$$

For multi-variable functions, the same rules apply, but we also have to add across the various variables. There are several cases to consider.

One independent variable

Theorem
If $w=f(x, y)$ is differentiable and if $x=x(t), y=y(t)$ are differentiable functions of t, then the composite $w=f(x(t), y(t))$ is a differentiable function of t and

$$
\frac{d w}{d t}=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

Example

Example

Find $\frac{d w}{d t}$ if $w=x y+z, x=\cos (t), y=\sin (t), z=t$.

Example

Example

Find $\frac{d w}{d t}$ if $w=x y+z, x=\cos (t), y=\sin (t), z=t$.
We have $w=f(x(t), y(t), z(t))$ is a function of three intermediate variables and one independent variable. Using a generalization of the formula above, we calculate

$$
\begin{aligned}
& \frac{d w}{d t}=\frac{\partial w}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial w}{\partial y} \cdot \frac{d y}{d t}+\frac{\partial w}{\partial z} \cdot \frac{d z}{d t}=(y)(-\sin (t))+(x)(\cos (t))+1(1) \\
& =(\sin (t))(-\sin (t))+(\cos (t))(\cos (t))+1=-\sin ^{2}(t)+\cos ^{2}(t)+1
\end{aligned}
$$

Example

Example

Find $\frac{d w}{d t}$ if $w=x y+z, x=\cos (t), y=\sin (t), z=t$.
We have $w=f(x(t), y(t), z(t))$ is a function of three intermediate variables and one independent variable. Using a generalization of the formula above, we calculate

$$
\begin{aligned}
& \frac{d w}{d t}=\frac{\partial w}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial w}{\partial y} \cdot \frac{d y}{d t}+\frac{\partial w}{\partial z} \cdot \frac{d z}{d t}=(y)(-\sin (t))+(x)(\cos (t))+1(1) \\
& =(\sin (t))(-\sin (t))+(\cos (t))(\cos (t))+1=-\sin ^{2}(t)+\cos ^{2}(t)+1
\end{aligned}
$$

This is the same formula that would be obtained if we had substituted x, y, z into w first to get $w=\cos (t) \sin (t)+t$ and then differentiated.

Two independent variables

Theorem
If $w=f(x, y)$ is differentiable and if $x=x(s, t), y=y(s, t)$ are differentiable functions of s and t, then the composite $w=f(x(s, t), y(s, t))$ is a differentiable function of s and t and

$$
\begin{aligned}
& \frac{\partial w}{\partial t}=\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t} \\
& \frac{\partial w}{\partial s}=\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s}
\end{aligned}
$$

Example

Example
Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w=x+2 y+z^{2}, x=\frac{r}{s}$,
$y=r^{2}+\ln (s), z=2 r$

Example

Example
Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w=x+2 y+z^{2}, x=\frac{r}{s}$, $y=r^{2}+\ln (s), z=2 r$
We have

$$
\frac{\partial w}{\partial r}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial r}=(1)\left(\frac{1}{s}\right)+(2)(2 r)+(2 z)(2)=\frac{1}{s}+12 r
$$

and

$$
\begin{gathered}
\frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial s} \\
=(1)\left(-\frac{r}{s^{2}}\right)+(2)\left(\frac{1}{s}\right)+(2 z)(0)=\frac{-r+2 s}{s^{2}}
\end{gathered}
$$

